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Abstract. We study a resource allocation problem with varying requests and with re-
sources of limited capacity shared by multiple requests. It is modeled as a set of het-
erogeneous restless multiarmed bandit problems (RMABPs) connected by constraints
imposed by resource capacity. Following Whittle’s relaxation idea and Weber and Weiss’
asymptotic optimality proof, we propose a simple policy and prove it to be asymptotically
optimal in a regime where both arrival rates and capacities increase. We provide a simple
sufficient condition for asymptotic optimality of the policy and, in complete generality,
propose a method that generates a set of candidate policies for which asymptotic opti-
mality can be checked. The effectiveness of these results is demonstrated by numerical
experiments. To the best of our knowledge, this is the first work providing asymptotic
optimality results for such a resource allocation problem and such a combination of
multiple RMABPs.
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1. Introduction
1.1. Overview and Motivation
Modern technologies enable Internet resources such
as routers, computing servers, and cables to be ab-
stracted from the physical layer to a virtual layer,
facilitating a quick response to demands for setting up
communication networks or processing computing
jobs. Virtual servers comprising different sets of phys-
ical resources are assigned to arriving customers who
use these resources for a period of time and then return
them to a pool when they depart.

Such networks are just particular examples of more
general systems where users of different types arrive
with a desire to be allocated resources of various
kinds, to use these resources, and then return them.
Users are often indifferent to the precise set of re-
sources that they are allocated, they just require al-
location of some resources that will enable them to
accomplish the task at hand. In such circumstances, a
networkmanager has the task of deciding whether an
arriving customer should be admitted into the system
and, if so, which set of resources should be assigned to
satisfy their requirements.

In this paper, we describe and analyze a very general
model for such systems. Specifically, we study a system
in which J resource pools, each made up of finite
numbers of resource units (RUs), await allocation to
incoming requests of L different types. We refer to the
number of RUs in a resource pool as its capacity. Each
resource pool is potentially shared and competed for
by many requests, but reservation of RUs for still-to-
arrive requests is also allowed. When a request has
been accommodated by a resource pool, an appro-
priate number of RUs of this type are occupied by the
request until it leaves the system. The released RUs
can be reused by other requests. A request is per-
mitted to occupy RUs from more than one resource
pool simultaneously. In this context, the number of
requests of the same type that are accommodated by a
group of resource pools varies according to a sto-
chastic process, where the transition rates are affected
by the resource allocation policy employed. Several
such processes associated with the same resource
pool are coupled by its capacity limitations.
By strategically assigning requests to appropriate

combinations of RUs, we aim to maximize the long-run
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average revenue, defined as the difference between
the long-run average reward earned by serving the
requests and the long-run average cost incurred by
using the resource pools. Such a resource allocation
problem can be easily applied to a rich collection of
classical models, such as loss networks in telecom-
munications, resource allocation for logistic systems,
and job assignment in parallel computing.

Kelly (1991) published a comprehensive analysis of
loss network models with and without alternative rout-
ing. In the latter case, network traffic can be rerouted
onto alternative paths when the original path fails or
is full. In Kelly (1991), a list of alternative paths as
choices of resource pools is given for each call/
request. The alternative paths are selected in turn if
preceding offered paths are unavailable. In contrast,
the manager of a typical resource allocation problem
described above is potentially able to change the
priorities of paths dynamically. How this should be
done is a key focus of this paper.

To illustrate the kind of problem of interest here,
consider the simple loss network model shown in
Figure 1. Links a, b, and c are abstracted as resource
pools with capacities equal to 1, 3, and 3, respectively:
link a consists of one channel as an RU, and links b and
c each have three channels. Requests asking for a
connection from A to B occupying one channel can be
served by either path {a} or {b, c}, but requests re-
quiring two channels for each connection from A to B
are able to be accommodated only by path {b, c}. We
refer to the former and the latter as type I and type II
requests, respectively. An arrival of a type I request
results in one of the paths {a} and {b, c} being chosen
by the optimizer depending on current traffic loads on
the three links, where links b and c might be shared
with existing type II requests. Occupied channels or
RUs are released immediately and simultaneously
when relevant requests are completed.

Resource allocation problemswith small values of L
and J, such as the previous example, can be modeled
by Markov decision processes (MDPs) and solved
through dynamic programming. However, in real-
world applications, where L and J are large, resulting
in high dimensionality of the state and action spaces,
such an approach is often intractable.

In this paper, we use an analysis inspired by
techniques applied to restless multiarmed bandit

problems (RMABPs). A standard RMABP consists of
parallel MDPs, each of which has available a binary
action, to activate or not. The coupling occurs because
only a limited number of theMDPs can be activated at
the same time. Each of the MDPs, referred to as a
bandit process, has its own individual state-dependent
reward rates and transition probabilities when it is
activated and when it is not.
Attempts to solve the problem are faced with ex-

ponential growth in the size of the state space as the
number of parallel bandit processes increases. This
class of problems was described by Whittle (1988),
who proposed a heuristic management policy that
was shown to be asymptotically optimal under non-
trivial extra conditions byWeber andWeiss (1990); this
policy approaches optimality as the number of bandit
processes tends to infinity and the number to be ac-
tivated at each decision epoch increases in proportion.
The policy, subsequently referred to as the Whittle
index policy, always prioritizes bandit processes with
higher state-dependent indices that intuitively rep-
resent marginal rewards earned by processes if they
are selected. The Whittle indices can be computed
independently for each bandit process: a process that
imposes significantly reduced computational com-
plexity. The Whittle index policy is scalable to a
RMABP with a large number of bandit processes.
Also, the asymptotic optimality property, if it is
satisfied, guarantees a bounded performance degra-
dation in a large-scale system and is appropriate for
large problems where optimal solutions are intrac-
table. The nontrivial extra conditions required by the
asymptotic optimality proof inWeber andWeiss (1990)
are related to proving the existence of a global attractor
of a stochastic process.
RMABPs have been widely used in scheduling

problems, such as channel detecting (Liu et al. 2012,
Wang et al. 2019), job assignments in data centers (Fu
et al. 2016), web crawling (Avrachenkov and Borkar
2016), target tracking (Krishnamurthy and Djonin
2007, Le Ny et al. 2010), and job admission control
(Niño-Mora 2012, 2019). Here we treat the resource
allocation problem described previously as a set of
RMABPs coupled by linear inequalities involving
random state and action variables.

1.2. Main Contributions
We propose a modified index policy that takes into
account the capacity constraints of the problem. The
index policy prioritizes combinations of RUs with the
highest indices, each of which is a real number repre-
senting the marginal revenue of using its associated
RUs. The policy is simple, scalable, and appropriate
for a large-scale resource allocation problem.
Our analysis of asymptotic optimality of the index

policy proceeds through a relaxed version of the

Figure 1. Simple Loss Network
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problem and study of a global attractor of a stochastic
process defined in EC.39 in the e-companion. We
prove that the stochastic process will almost surely
converge to a global attractor in the asymptotic re-
gime regardless of its initial point, and hence the
index policy is asymptotically optimal if and only if
this global attractor coincides with an optimal solu-
tion of the resource allocation problem. Following
ideas similar to those of Weber and Weiss (1990),
optimality of the global attractor for the resource allo-
cation problem can be deduced from its optimality for
the relaxed problem, which can be analyzed with re-
markably reduced computational complexity.

A sufficient condition for the global attractor and
optimal solution to coincide is that the offered traffic
for the entire system is heavy,and the resource pools in
our system are weakly coupled. We rigorously define
these concepts in Section 3.3. These results are enun-
ciated in Theorems EC.1 and EC.2 and Corollary EC.1
in Appendix EC.9.3 in the e-companion.

When the abovementioned sufficient conditions are
not satisfied, an asymptotically optimal index policy
can still exist. In this case, we propose a method that
can derive the parameters required by the asymptoti-
cally optimal policy. Although asymptotic optimality is
not guaranteed, Theorem EC.2 in the e-companion
provides a verifiable sufficient condition, less stringent
than the one mentioned previously, to check asymp-
totic optimality of the index policy with adapted pa-
rameters. We numerically demonstrate the effective-
ness of this method in Section 5.

The index policy exhibits remarkably reduced com-
putational complexity, compared with conventional
optimizers, and its potential asymptotic optimality is
appropriate for large-scale systems where computa-
tional power is a scarce commodity. Furthermore,
simulation studies indicate that an index policy can
still be good in the prelimit regime. As mentioned
earlier, our problem can be seen as a set of RMABPs
coupled by the capacity constraints. When the ca-
pacities of all resource pools tend to infinity, the index
policy reduces to the Whittle index policy because the
links between RMABPs no longer exist.

To the best of our knowledge, no existing work has
proved asymptotic optimality in resource allocation
problems, where resource competition and reserva-
tion are potentially permitted, nor has there been a
previous analysis of such a combination of multiple,
different RMABPs, resulting in a much higher di-
mensionality of the state space.

The remainder of the paper is organized as follows.
In Section 2, we give a detailed definition of the re-
source allocation problem. In Section 3, we obtain and
analyze a relaxed version of the resource alloca-
tion problem by applying the Whittle relaxation

technique that randomizes its action variables. Based
on an optimal solution of the relaxed problem, in
Section 4, we propose an algorithm to construct an
index policy that is potentially optimal in the limiting
regime mentioned previously. To demonstrate the
effectiveness of the proposed policies, numerical re-
sults are provided in Section 5. In Section 6, we
present conclusions.

1.3. Relation to the Literature
The classical MABP is an optimization problem in
which only one bandit process (BP) among K BPs can
be activated at any one time, whereas all the other K − 1
BPs are frozen: an active BP randomly changes its
state, whereas state transitions will not happen to the
frozen BPs. In 1974, Gittins and Jones published the
well-known index theorem for the MABP (Gittins and
Jones 1974), and in 1979, Gittins (1979) proved the
optimality of a simple index policy, subsequently re-
ferred to as the Gittins index policy. Under the Gittins
index policy, an index value, referred to as the Gittins
index, is associated with each state of each BP, and the
BP with the largest index value is activated, whereas
all the other BPs are frozen.More details about Gittins
indices can be found in Gittins et al. (2011, chapter
2.12 and the references therein).
The optimality of the Gittins index policy for the

conventional MABP fails for the general case where
the K − 1 BPs that are not selected can also change their
states randomly; such a process is known as a RMABP
Whittle (1988). The RMABP allowsM � 1, 2, . . . ,K BPs
to be active simultaneously. In a similar vein to the
Gittins index policy,Whittle assigned a state-dependent
index value, referred to as theWhittle index, to each BP
and always activated the M BPs with the highest
indices. The Whittle indices are calculated from a
relaxed version of the original RMABP obtained by
randomizing the action variables. Whittle (1988) de-
fined a property of a RMABP, referred to as index-
ability, under which the Whittle index policy exists.
Whittle (1988) conjectured that the Whittle index
policy, if it exists, is asymptotically optimal. Papadimitriou
and Tsitsiklis (1999) proved that the optimization of
RMABPs is PSPACE-hard in general; nonetheless,
Weber and Weiss (1990) were able to establish as-
ymptotic optimality of Whittle index policy under
mild conditions.
Niño-Mora (2001) proposed a partial conservation

law (PCL) for the optimization of RMABPs; this is an
extension of the general conservation law (GCL)
published in Bertsimas and Niño-Mora (1996). Later,
Niño-Mora (2002) defined a group of problems that
satisfies PCL-indexibility and proposed a new index
policy that improved the Whittle index. The new
index policy was proved to be optimal for problems
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with PCL-indexibility. PCL-indexibility implies (and
is stronger than) Whittle indexibility. A detailed
survey about the optimality of bandit problems can
be found in Niño-Mora (2007).

Verloop (2016) proved the asymptotic optimality of
the Whittle index policy in an extended version of an
RMABP, where BPs randomly arrive and depart the
system. She proposed an index policy that was not
restricted to Whittle indexable models and numeri-
cally demonstrated its near optimality. Larrañaga
et al. (2015) applied this extended RMABP to a queue-
ing problemassuming convex, nondecreasing functions
for both holding costs and measured values of people’s
impatience. More results on asymptotic optimality of
index-like polices can be found in (Fu 2016, chapter IV).

Asymptotically optimalpolicies for cost-minimization
problems in network systems using a fluid approxi-
mation technique have been considered in Bäuerle et al.
(2000), Bäuerle (2002), Stolyar (2004), Nazarathy and
Weiss (2009), and Bertsimas et al. (2015). The fluid
approximation to the stochastic optimization prob-
lem can be much simpler than the original. A key
problem here is to establish an appropriate fluid
problem and translate its optimal solution to a policy
amenable to the stochastic problem. Asymptotic opti-
mality of the translated stochastic policy can be estab-
lished if the fluid solution provides an upper/lower
bound of the stochastic problem and the policy coin-
cides with this bound asymptotically. The reader is
referred to Meyn (2008) for a detailed description of
fluid approximation across various models.

Although the fluid approximation technique helps
with asymptotic analysis in a wide range of (cost-
minimization) network problems, existing results can-
not be directly applied to our problem, where the ar-
rival anddeparture rates of requests are state-dependent
and capacity violation over resource pools is strictly
forbidden. Our system is always stable for any offered
traffic because of the strict capacity constraints. In our
case, the form of the corresponding fluid model re-
mains unclear for generic policies. Even given the
optimal solution of a well-established fluid model, the
synthesis of an explicit policy in the stochastic model
remains a challenge.

We adopt another approach, following the ideas of
Whittle (1988) and Weber and Weiss (1990). Our as-
ymptotic optimality is derived froman optimal solution
of a relaxed version of the stochastic optimization
problem. The relaxed problem is still a stochastic op-
timization problem with a discrete state space. We
propose a policy based on intuition captured by the
relaxedproblem, ofwhich theoptimal solutionprovides
a performance upper bound of the original problem.
Then, we prove, under certain conditions, that this

policy coincides with the upper bound asymptotically.
The detailed analysis comprises the main content of
the paper.

2. A Resource Allocation Problem
We use N+ and N0 to denote the sets of positive and
nonnegative integers, respectively, and for anyN ∈ N+,
let [N] represent the set {1, 2, . . . ,N} with [0] � ∅. Let
R, R+, and R0 be the set of all, positive, and non-
negative reals, respectively.

2.1. System Model
Recall that there are L types of requests and J pools of
RUs, all potentially different, with resource pool j ∈
[J] having capacity Cj that can be dynamically allo-
cated to and released by the L types of requests.
Each request comes with an associated list of candi-

date resource combinations. Specifically, requests from
request type (RT) � ∈ [L] can be accommodated by one
of a set P� of candidate patterns. One of these can-
didate patterns will be selected by a policy. Patterns
are indexed by i ∈ N+. If a request is accommodated by
pattern i, wj,i RUs of pool j ∈ [J] are occupied until the
request is completed and departs. We can thus identify
pattern i with the weight vector wi � (wj,i) that defines
its requirement. Preemption or reallocation of re-
quests are not allowed. A request is blocked if there is
not enough capacity on any of its corresponding
patterns. We might also want to block a request in
other circumstances, if accepting it would be detri-
mental to future performance. In either case, we
model the situation where a request is blocked by
assigning it to the dummypattern d(�)with theweight
vector set to 0.
It is possible for different RTs to be satisfied by the

same pattern (this occurs, in particular with the
dummy pattern). In such cases, we consider there to
be multiple copies of each pattern, one for each RT
that it can satisfy. This enables us to consider the sets
P� to be mutually exclusive; that is, P�1 ∩P�2 � ∅ for
any �1 �� �2. Given |P� | patterns for each RT �, we have
in total I � ∑

�∈[L] |P� | patterns associated with weight
vectorswi ∈ N

J
0, i ∈ [I]. For any pattern i, let �(i) be the

unique RT that is satisfied by that pattern.
Let W be a J × I matrix with entries wj,i. We assume

that there is no row and exactly L columns in W with
all zero entries. Each of these zero columns corre-
sponds to one of the dummy patterns d(�) where
requests of type � ∈ [L] are blocked.
Requests of RT � arrive at the system sequentially,

following a Poisson process independent of the ar-
rival processes of other request types, with rates λ�

and the occupation times of the requests accommo-
dated by pattern i ∈ P� are exponentially distributed
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with parameter μi again independently of other ran-
dom elements. Although there might be situations
when it is reasonable to assume that the occupation
time depends only on the request type �, there might
also be cases where the lifetime of a request depends
on the resources accommodating it, which is why we
allow the occupation time distribution to depend on i.
The RUs used to accommodate a request are occupied
and released at the same time. Neither the request nor
the system knows the lifespan of a request until it is
accomplished and departs the system.

Because there are similarities between our problem
and a parallel queueing model, we present a second
example to clarify the similarities and differences.
Consider two resource pools corresponding to two
queues as illustrated in Figure 2, where both capac-
ities are set to three; that is, J � 2 and C1 � C2 � 3.
There are two types of requests: if a type 1 request is
accommodated in the system, it will simultaneously
occupy one RU of both pools; and a type 2 request can
be accommodated by two RUs of either pool. In other
words, L � 2, P1 � {1, 2}, P2 � {3, 4, 5}, patterns 2
and 5 are dummy patternswithw2 �w5 � 0,w1 � (1, 1),
w3 � (2, 0), w4 � (0, 2), and I � 5.

In this case, the number of occupied RUs in both
resource pools may decrease or increase by one si-
multaneously or by two exclusively for an arrival or
departure event. The transition rates are affected by
the system controller: if the capacity constraints are
not violated, there are two choices, resource pool 1
or 2, for accommodating a type 2 request. The task of a
systemmanager is to find a policy for deciding which
of these choices to take in order to maximize some
long-term objective. Each choice will result in a
parallel queueing model with dependencies between
the sizes of queues, between the policy employed, and
queue transition rates. As mentioned in Section 1,
conventional optimization methods cannot be ap-
plied directly when L and J are large.

2.2. A Stochastic Optimization Problem
We focus here an explanation of the stochastic mech-
anism of the resource allocation problem.

An instantiation is generated in the memory of the
system controller when a request of RT � ∈ [L] is ac-
commodated by a pattern i ∈ P�. Once the request
departs the system, the associated instantiation will
be removed from the controller’s memory. As re-
quests are accommodated and completed, the num-
ber of instantiations associated with each pattern
forms a birth-and-death process, indicating the number
of requests being served by this pattern. As mentioned
in the second example, the birth-and-death processes
for all patterns i ∈ [I] are coupled by capacity con-
straints and affected by control decisions.
Let Ni(t), t ≥ 0, represent the number of instantia-

tions for pattern i at time t. The process Ni(t) has state
spaceNi that is a discrete, finite set of possible values.
The finiteness of Ni derives from the finite capac-
ities Cj. If Ni(t) is known for all i ∈ [I], the number of
occupied RUs in pool j ∈ [J] at time t is given by
Sj(t) � ∑

i∈[I] wj,iNi(t), which must be less than Cj. The
vectorN(t) � (Ni(t) : i ∈ [I]) is the state variable of the
entire system taking values inN :� ∏

i∈[I] Ni, where
∏

represents Cartesian product. Because the state var-
iables are further subject to capacity constraints to be
discussed in Section 2.2.2,N is larger than necessary.
With slightly abused notation, we still refer to N as
the state space of the system.

2.2.1. Action Constraints. We associate an action var-
iable ai(n) ∈ {0, 1}with process i ∈ [I]when the system
is in state n ∈ N, and a(n) � (ai(n) : i ∈ [I]). The action
variable ai(n) tells us what to do with a potential new
request of type �(i). If ai(n) � 1, then such a patternwill
be allocated to pattern i. The action constraint,∑

i∈P�

ai n( ) � 1, ∀� ∈ L[ ], ∀n ∈ N, (1)

ensures that exactly one pattern (which may be the
dummy pattern d(�)) is selected for each RT � and
current state n.
At any time t, we say that the arrival process for

pattern i is active or passive according to whether
ai(N(t)) is 1 or 0, respectively. The birth rate of process
i ∈ P�, � ∈ [L], is λ� if ai(N(t)) � 1; and zero otherwise.
The death rate of process i is μiNi(t). The time pro-
portion that ad(�)(N(t)) � 1 is the blocking probability for
requests of type �.

2.2.2. Capacity Constraints. To ensure feasibility of an
allocation of a request of type �(i) to pattern iwhen the
state is n, we need

W n + ei( ) ≤ C, (2)
where ei is a vector with a one in the ith position and
zeros everywhere else and C ∈ N

J
+ is a vector with

Figure 2. Simple Parallel Queueing Model
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entries Cj. In view of the action Constraint (1), a neat
way to collect together the Constraints (2) for all i ∈
P� is to write them in the form

W n + E�a n( )( ) ≤ C, ∀n ∈ N, (3)
where E� is a diagonal matrix of size I with entries
e�,i,i � 1 if i ∈ P� and e�,i,i � 0 if i ∈ [I]\P�.

For two different request types �1 and �2, a con-
straint of the form

W n + E�1a n( ) + E�2a n( )( ) ≤ C, ∀n ∈ N, (4)
captures the idea that the action vector a(n) must be
such that the allocation decisions for �1 and �2 ensure
enough capacity to implement both of them when
both requests arrive simultaneously while the state
is n. Another way to think about this is that, if a re-
quest of type �1 is allocated to a nondummy pattern i1
when the state is n, the decision for a request of type �2
when the state is n must satisfy Constraint (3) when
the state is n + ei1 . In particular, if there is not enough
capacity to accommodate a request of type �2 when
the state is n + ei1 , then a request of type �2 must be
allocated to the dummy pattern d(�2), when the state
is n. This can be viewed as giving priority to reserving
resources for a type �1 request over a type �2 request
when the state is n. Aswe shall see below, the decision
to do this will be made in order to optimize a long-
term reward function.

Observing that
∑

�∈[L] E� � I, we see that the constraint

W n + a n( )( ) � W n + ∑
�∈ L[ ]

E�

( )
a n( )

( )
≤ C, ∀n ∈ N, (5)

can be thought of as an extended version of (4). In (5),
requests of all types are taken into account when the
state is n and allocation decisions for some types are
made in order to reserve resources for other types that
turn out to be more profitable in the long run. In
particular, resources are reserved for those request
types �which are allocated to nondummypatterns i at
the expense of those types that are allocated to less
profitable patterns or the corresponding dummy pat-
terns. In this paper, all the results presented are basedon
the capacity Constraint (5).

From (5), there is an upper bound, minj∈[J]
Cj/wj,i�,
on the number of instantiations of pattern i, and this
serves as a bounding state at which no further in-
stantiation of this pattern can be added; that is, Ni �
{0, 1, . . . ,minj∈[J]
Cj/wj,i�} and |Ni| � minj∈[J]
Cj/wj,i�
+ 1 < +∞. In this context, Equation (5) implies
the condition

ai n( ) � 0, if i /∈ d �( ) : � ∈ L[ ]{ } and ni � |Ni| − 1. (6)

2.2.3. Objective. A policy φ is defined as a mapping
N → AwhereA :� ∏

�∈[L]{0, 1}|P� |, determined by the
action variables a(n)defined previously.Whenwe are
discussing a system operating with a given policy φ,
we rewrite the action and state variables as aφ(·) and
Nφ(t), respectively.
By serving a request of type � ∈ [L] and occupying

an RU of pool j for one unit of time, we gain expected
reward r� and pay expected cost εj. The expected
reward for a whole service is gained at the moment
the service is completed. It corresponds to the situ-
ation where a request allocated to pattern i earns
reward at rate r�(i)μi for as long as it is in the system (so
that the expected revenue per customer is (r�(i)μi) .
(1/μi) � r�(i)). The value of εj is the cost per unit time of
using a unit of capacity from resource pool j in which
case the expected cost of accommodating the request
in pool j as part of pattern i is εj/μi. We seek a policy
that maximizes the revenue: the difference between
expected reward and cost, by efficiently using the
limited amount of resources.
The objective is to maximize the long-run average

rate of earning revenue, which exists because, for any
policy φ, the process can be modeled by a finite-state
Markov chain. Let r � (r� : � ∈ [L]) and ε � (εj : j ∈ [J]).
For all � ∈ [L] and i ∈ [I], define a L × I matrix U with
entries u�,i :� μi1i∈P� . By the Strong Law of Large
Numbers for Continuous Time Markov Chains, see
for example Serfozo (2009) (theorem 45 in Chapter 4),
noting the subsequent discussion of the case where
rewards are earned at jump times, the long-run av-
erage rate of earning revenue when the policy is φ is
given by

Rφ :� Eπφ rU − εW[ ] � ∑
i∈ I[ ]

∑
ni∈Ni

π
φ
i ni( )

× r� i( )μi −
∑
j∈J

wj,iεj

( )
ni, (7)

whereπφ
i (ni) is the stationary probability that the state

of process i is ni when the policy is φ. Then we wish to
find the policy φ that maximizes Rφ, that is we wish
to find

R :� max
φ

Rφ. (8)

Define Φ to be the set of all policies with the con-
straints in (1) and (5) satisfied. Each policy inΦ is then
a feasible policy for our resource allocation problem.

3. Whittle Relaxation
Our resource allocation problemwith objective function
defined by (8) and constraints given by (1) and (5) can
be modeled as a set of RMABPs coupled by capacity
constraints.We leave the specification of the RMABPs
to Appendix EC.1 in the e-companion to this paper.
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In this section, we provide a theoretical analysis of
the resource allocation problem, following the idea of
Whittle relaxation Whittle (1988). In the vein of a
RMABP, we randomize the action variable aφ(n) so
that its elements take values from {0, 1} with proba-
bilities determined by the policy φ and relax Con-
straint (1) to require that

lim
t→+∞E

∑
i∈P�

aφi Nφ t( )( )[ ]
� 1, ∀� ∈ L[ ]. (9)

Following similar ideas,we relax (5) into two equations:

lim
t→+∞E W Nφ t( ) + aφ Nφ t( )( )( )[ ] ≤ C, (10)

and

lim
t→+∞E aφi Nφ t( )( )

1Nφ

i t( )�|Ni |−1
[ ]

� 0,

∀i ∈ I[ ]\ d �( ) : � ∈ L[ ]{ }. (11)
Remark 1. Equation (10) is derived by taking expec-
tations for both sides of Equation (5), and (11) is a
consequence of (6), so constraints described by (10)
and (11) are relaxed versions of the constraints de-
scribed by (5). The justification for Equation (11) will
be discussed in Appendix EC.9.1 in the e-companion,
in conjunction with the physical meanings of all var-
iables, when we increase the scale of the entire sys-
tem. We refer to the problem with Objective (8),
Constraints (9)–(11) and randomized control variables
aφ(n), for all n ∈ N, as the relaxed problem.

A value a in (0, 1) can be interpreted as a random-
isation between taking aφi (n) � 0 and aφi (n) � 1. Spe-
cifically we take aφi (n) � 1 with probability a. We
represent the set of policies that correspond to assign-
ing such values a ∈ (0, 1) as Φ̃. For ni ∈ Ni, φ ∈ Φ̃,
i ∈ [I], define

• α
φ
i (ni) :� limt→+∞ E[aφi (Nφ(t)) | Nφ

i (t) � ni], which
is the expectation with respect to the stationary dis-
tribution when policy φ is used, and the vector αφ

i :�
(αφ

i (ni) : ni ∈ Ni);
• the stationary probability that Nφ

i (t) � ni under
policyφ to beπφ

i,ni , and the vectorπφ
i :� (πφ

i,ni : ni ∈ Ni).
Let Πφ

n :�(πφ
i ·(Ni) : i∈[I])T and Π

φ
a :�(πφ

i ·αφ
i : i∈[I])T,

where (Ni) represents the vector (0, 1, . . . , |Ni| − 1).
The Lagrangian function for the optimization problem
with Objective Function (8) and Constraints (9)–(11) is

g γ,ν, η
( )

:� max
φ∈Φ̃

rU − εW( )Πφ
n

−∑L
��1

ν�
∑
i∈P�

π
φ
i · αφ

i − 1

( )
− γ · W Π

φ
n +Π

φ
a

( )
− C

( )
− ∑

i∈ I[ ]\ d �( ): �∈ L[ ]{ }
ηiπ

φ

i,|Ni |−1α
φ
i |Ni| − 1( ), (12)

where ν ∈ RL, γ ∈ R
J
0, and η ∈ RI−L are Lagrange mul-

tiplier vectors for Constraints (9)–(11), respectively.
In (12), the constraints no longer apply to variables
α
φ
i (i ∈ [I]) but appear in the maximization as cost

items weighted by their Lagrange multipliers. For
i ∈ [I]\{d(�) : � ∈ [L]}, define functions

Λi φ,γ, ν� i( ), ηi
( )

:� r� i( )μi − ε ·wi
( )

π
φ
i · Ni( )

− ν� i( )π
φ
i · αφ

i − γ · wi π
φ
i · Ni( ) + π

φ
i · αφ

i

( )( )
− ηiπ

φ

i,|Ni |−1α
φ
i |Ni| − 1( ), (13)

where we recall that wi is the weight vector of pattern i
givenby the ith columnvectorofW; similarly, for � ∈ [L],
γ∈RJ

0 and η ∈R, define Λd(�)(φ,γ, ν�,η) :�−ν�αφ

d(�)(n),
where n is the only state inNd(�). From Equation (12),
for γ ∈ R

J
0, ν ∈ RL, and η ∈ RI−L,

g γ,ν, η
( ) � max

φ∈Φ̃

∑
i∈ I[ ]

Λi φ,γ, ν� i( ), ηi
( ) + ∑

�∈ L[ ]
ν� + γ · C,

(14)
where ηd(�) (� ∈ [L]) are unconstrained real numbers
that are used for notational convenience.
In themaximization problemon the right-hand side

of (14), there is no constraint that restricts the value of
one Λi(φ,γ, ν�(i), ηi) once the others are known. As a
result, we can maximize the sum in (14) by maxi-
mizing each of the summands independently. We can
thus write (14) as

g γ,ν, η
( ) � ∑

i∈ I[ ]
max
φ∈Φ̃

Λi φ,γ, ν� i( ), ηi
( ) + ∑

�∈ L[ ]
ν� + γ · C,

(15)
but with the maximum over φ ∈ Φ̃. Observe now that
maximizingΛi over φ is equivalent to choosing α

φ
i (ni)

from [0, 1]|Ni |, by interpreting α
φ
i,n ∈ [0, 1] as the prob-

ability that process i is activated under policy φwhen
it is in state n. Thus,

g γ, ν,η
( ) � ∑

i∈ I[ ]
max

α
φ

i ∈ 0,1[ ]|Ni |
Λi φ,γ, ν�, ηi
( )

+ ∑
�∈ L[ ]

ν� + γ · C. (16)

By slightly abusing notation, we refer to the policy φ
determined by an action vector αφ

i as the policy for
pattern i, and define Φi as the set of all policies for
pattern i.

Definition 1. The maximization of Λi(φ,γ, ν�, ηi) over
α
φ
i ∈ [0, 1]|Ni | is the subproblem for pattern i ∈ [I].
For givenγ, ν and η, the subproblem for any pattern

is an MDP, so that it can be numerically solved by
dynamic programming. By solving the subproblems
for all patterns i ∈ [I], we obtain g(γ,ν,η). For any γ, ν
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and η, the Lagrangian function g(γ,ν,η) is a perfor-
mance upper bound for the primal problem described
in (8)–(11), which is a relaxed version of the original
resource allocation problem. Thus, there will be a
nonnegative gap between this upper bound and the
maximized performance of the original problem.

3.1. Analytical Solutions

Proposition 1. For given ν and γ, there exists E ∈ RI−L
such that, for any η > E, a policy of the subproblem for
pattern i, referred to as ϕ̄ ∈ Φi, determined by action vector
α
ϕ̄
i ∈ [0, 1]|Ni | is optimal for this subproblem, if, for n ∈ Ni,

αϕ̄
i (n)

� 1 if 0 < λ� r� − 1
μi

∑
j∈Ji

εjwj,i

( )
− 1+ λ�

μi

( ) ∑
j∈Ji

wj,iγj − ν� and n < |Ni| − 1, (17)

∈ [0,1] if 0 � λ� r� − 1
μi

∑
j∈Ji

εjwj,i

( )
− 1+ λ�

μi

( ) ∑
j∈Ji

wj,iγj − ν� and n < |Ni| − 1, (18)
� 0 otherwise, (19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where � � �(i).

The proof will be given in Appendix EC.1 in the
e-companion to this paper. In the maximization of
Λi(φ,γ, ν�(i), ηi)), the only term of Λi dependent on η
is −ηiπφ

i,|Ni |−1α
φ
i (|Ni| − 1). The choice of a sufficiently

large ηi guarantees that α
φ
i (|Ni| − 1) is 0 for an optimal

policy of the subproblem, so that Constraints (11) of
the relaxed problem are satisfied. For convenience, in
what followswe fix η to be one of these large values so
that αφ

i (|Ni| − 1) � 0 for any optimal policy φ of the
subproblem for pattern i. By slightly abusing nota-
tion, in all subsequent equations and discussions, we
directly require αφ

i (|Ni| − 1) � 0 (i ∈ [I]\{d(�) : � ∈ [L]})
unless specified otherwise.

Remark 2. Recall that the action variables α
φ
i for any

pattern i ∈ [I] and policy φ ∈ Φi are potentially state-
dependent. However, the right-hand sides of Equa-
tions (17)–(19) are independent of the state variable n that
appears on their left-hand side, provided that this is less
than |Ni|−1. This state-independence phenomenon is a
consequence of the linearity of the reward and cost
rates in the state variable, Nφ

i (t), for pattern i ∈ [I]\
{d(�) : � ∈ [L]}: from our definition in Section 2, the
reward and cost rates of process i in state Nφ

i (t) are
r�(i)μiN

φ
i (t) and

∑
j∈Ji

εjwj,iN
φ
i (t), respectively. A de-

tailed analysis is provided in the proof of Proposition 1.

Using an argument similar to that inWhittle (1988),
we can derive from (17)–(19) an abstracted priority for
eachpattern-state pair (PSpair) (i,n)withn∈Ni\{|Ni| −1}
and i ∈ [I]; unlike in Whittle (1988), here, this priority

is (γ,ν) dependent. The priority of a PS pair (i, n)with
n ∈ Ni\{|Ni| − 1} is determined by the index

Ξi γ,ν
( )

:� λ� i( ) r� i( ) − 1
μi

∑
j∈Ji

εjwj,i

( )

− 1 + λ� i( )
μi

( )∑
j∈Ji

wj,iγj − ν� i( ), (20)

and (17)–(19) can be characterized comparing Ξi(γ, ν)
with 0. When there is strict inequality in the com-
parison (that is, the cases described in (17) and (19)),
the value ofαφ

i (n) is specified, because PS pairs (i,n) for
all n ∈ Ni\{|Ni| − 1} correspond to the same Ξi(γ, ν)
value. However, there is still freedom to decide dif-
ferent values of α

φ
i (n), when Ξi(γ,ν) � 0 (the case

described in (18)). A detailed discussion about pri-
orities of PS pairs corresponding to the same Ξi(γ, ν)
will be provided in Section 3.2. By solving the sub-
problem of dummy pattern d(�) (� ∈ [L]), which in-
volves only one state n ∈ Nd(�), we obtain an optimal
policy ϕ determined by

α
ϕ
d �( ) n( )

� 1, if 0 < −ν�,
∈ 0, 1[ ], if 0 � −ν�,
� 0, otherwise.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (21)

The priority of the state of a dummy pattern is then
Ξd(�)(γ, ν) ≡ −ν for any γ.
In addition, from Equation (19) in Proposition 1, for

any given ν ∈ RI and γ ∈ R
J
0, there exists η ∈ RI−L such

that it is optimal to make states |Ni| − 1 passive (that
is,αϕ̄

i (|Ni| −1) � 0) for all i ∈ [I]\{d(�) : � ∈ [L]}. Among
all PS pairs (n, i) (n ∈ Ni, i ∈ [I]), we assign, without
loss of generality, the least priority to those PS pairs
(i, |Ni| − 1) for which i ∈ [I]\{d(�) : � ∈ [L]}.
The policy ϕ̄ determined by (17)–(19) and (21) is

optimal for the relaxed problem described by (8)–(11),
if the givenmultipliers ν andγ that appear in (17)–(19)
and (21) satisfy the complementary slackness condi-
tions of this relaxed problem, defined by complemen-
tary slackness:

ν�
∑
i∈Pl

π
φ
i · αφ

i − 1

( )
� 0, ∀l ∈ L[ ], (22)

and

γj ωj · Π
φ
n +Π

φ
a

( )
− Cj

( )
� 0, ∀j ∈ J[ ], (23)

where ωj � (wj,i : i ∈ [I]) is the jth row of matrix W.
In this context, if resource pool j ∈ [J] is very pop-

ular so that the capacity constraint corresponding
to the jth row in (10) achieves equality, then γj is
allowed to be positive, leading to a lower value of
Ξi(γ,ν) than for γj � 0. On the other hand, if resource
pool j ∈ [J] cannot be fully occupied and the jth
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capacity constraint in (10) is satisfied with a strict
inequality, then the complementary slackness con-
dition described in (23) forces γj to be zero. Following
this mechanism, when resource pool j ∈ [J] is over-
loaded and its priority is reduced by increasing γj, the
offered traffic to this resource pool will be reduced in
line with its priority.

If there exist multipliers ν, γ and a policy ϕ̄ de-
termined by (17)–(19), such that the complementary
slackness Conditions (22) and (23) are satisfied by
taking φ � ϕ̄, then, by the strong duality theorem, this
policy ϕ̄ is optimal for the relaxed problem; this ob-
servation, together with Theorem EC.1 in Appendix
EC.9.3 in the e-companion, leads to the existence of an
asymptotically optimal policy feasible for the original
problem, derived with priorities of patterns induced
by the descending order ofΞi(γ,ν).More details about
the analysis in the asymptotic regimewill be provided
in Appendix EC.9 in the e-companion. Here we focus
on the nonasymptotic regime and specifically on the
choice and computation of γ and ν.

3.2. Decomposable Capacity Constraints
In the general case, it is not clear whether the com-
plementary slackness Conditions (22) and (23) can be
satisfied and, even if they are,what the values ofγ and
ν are. More important is the question of how the
multipliers help with proposing an asymptotically
optimal policy applicable to the original problem.

3.2.1. Priorities of PS Pairs. Asdescribed in Section 3.1,
the priorities of PS pairs are determined by the
descending order of Ξi(γ,ν), with higher priorities
given by higher values of Ξi(γ,ν). It may happen that,
because of different tie-breaking rules, the same γ and
ν lead to different priorities. For given γ ∈ R

J
0 and

ν ∈ RL, letO(γ,ν) represent the set of all rankings of PS
pairs compatible with the descending order ofΞi(γ,ν)
(i ∈ [I]). Also, for notational convenience, let O rep-
resent the set of all PS pair rankings.

To emphasize the priorities of these PS pairs, accord-
ing to a given ranking o ∈ O, we label all these pairs by
their order ιo ∈ [N] with N :� ∑

i∈[I] |Ni| and (iιo ,nιo)
giving the pattern and the state of the ιoth PS pair. We
will omit the superscript o and use ι unless it is nec-
essary to specify the underlying ranking. There exists
one and only one � ∈ [L] satisfying iι ∈ P� for any PS
pair labeled by ι. Such an � is denoted by �ι.

Algorithm 1. Priority-Style Policy for the Relaxed Problem
Input: a vector of nonnegative reals γ ∈ R

J
0 and

a ranking of PS pairs o ∈ O.
Output: a policy ϕ̄(o) ∈ Φ̃ determined by action

variables αϕ̄(o)
i ∈ [0, 1]|Ni | for all i ∈ [I] and a

vector of reals ν(o,γ).

1 Function PriorityPolicyo,γ:
2 α

ϕ̄
i ← 0 for all i ∈ [I] /*Variables αϕ̄

i determine a
policy ϕ̄*/

3 Initializing the list of candidate PS pairs as the list
of all PS pairs;

4 ι ← 0 /*Iteration variable*/
5 while ι < N and the list of candidate PS pairs

is not empty do
6 ι ← ι + 1;
7 If PS pair ι is not in the list of candidate PS pairs then
8 continue
9 end
10 a1← inf{{αϕ̄

iι (nι) ∈ [0,1]|
∑

i∈P�ι
π
ϕ̄
i ·αϕ̄

i �1.}∪{1}};
/ ∗The maximal probability of activating

PS pair ι such that ∗ /
/ ∗the action constraint for RT �ι is not viola-

ted.∗ /
11 a2← inf{{αϕ̄

iι (nι)∈[0,1]|∃j∈[J],ωj · (Πϕ̄
n +Π

ϕ̄
a )�

Cj.} ∪ {1}}; / ∗The maximal probability of
activating PS pair ι such that* /

/ ∗ the capacity constraints are not violated.* /
12 α

ϕ̄
iι (nι) ← min{a1, a2}; / ∗Update αϕ̄

iι (nι) with the
maximal activating probability* /

/ ∗without violating any constraint. ∗/
13 if

∑
i∈P�ι

π
ϕ̄
i · αϕ̄

i � 1 then
/ ∗If the action constraint achieves equality

under policy ϕ̄ ∗/
/* determined by updated α

ϕ̄
i , i ∈ [I]. ∗/

14 ν�ι (o,γ) ← Ξiι (γ, 0)
15 remove all PS pairs ι′ > ιwith �ι′ � �ι from the

list of candidate PS pairs;
16 else if ∃j ∈ [J], ωj · (Πϕ̄

n +Π
ϕ̄
a ) � Cj then

/ ∗If a capacity constraint achieves equality
under policy ϕ̄ ∗/

/ ∗determined by updated α
ϕ̄
i , i ∈ [I]. ∗/

17 remove all PS pairs ι′ > ι with wj,iι′ > 0 from
the list of candidate PS pairs;

18 end
19 end
20 α

ϕ̄(o)
i ← α

ϕ̄
i for all i ∈ [I];

21 return

For any given ranking of PS pairs o ∈ O, Algorithm 1
generates a policy ϕ̄(o) with priorities of PS pairs
defined by o, such that (9)–(11) are satisfied: the policy
ϕ̄(o) is feasible for the relaxed problem but not nec-
essarily feasible for the original problem. The key idea
for generating such a ϕ̄(o) is to initializeαϕ̄(o)

i to 0 for all
i ∈ [I], and sequentially activate the PS pairs accord-
ing to their priorities defined by ountil either a relaxed
action or capacity constraint described in (9) and (10),
respectively, achieves equality. In particular,
I. if a relaxed action constraint described in (9)

achieves equality by activating PS pairs less than or
equal to ι, then the multiplier ν�ι is set to Ξiι(γ, 0), and
all later PS pairs ι′ > ι with �ι′ � �ι are disabled from
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being activated and are removed from the list of
candidate pairs awaiting later activation;

II. Similarly, if a relaxed capacity constraint de-
scribed in (10) associated with resource pool j ∈ [J]
achieves equality by activating PS pairs less than or
equal to ι, then all later PS pairs ι′ > ιwithwj,iι′ > 0 are
disabled and removed from the list of candidate states.

Maintaining an iteratively updated list of candidate
pairs in this way continues until all action constraints
in (9) achieve equality: the policy ϕ̄(o) is determined
by the resulting α

ϕ̄(o)
i (i ∈ [I]), and the multipliers ν are

updated as in I. The vector of these multipliers is
denoted by ν(o,γ) and is listed as an output of
Algorithm 1. The PS pair labeled by ι satisfying the
condition described in I) is called the critical pair, with
the corresponding resource pool j referred to as the
critical pool of PS pair ι, denoted by jι(o). From the
description in I), there might be more than one re-
source pool forwhich the capacity constraints achieve
equality simultaneously while activating PS pair ι; we
choose one of them to be jι(o) and refer to this resource
pool as the critical pool of ι. LetI(o) represent the set
of all critical pairs with respect to the policy ϕ̄(o).
Lemma1. For any o∈O and ι,ι′ ∈I(o), if ι �� ι′ then iι �� iι′ .

Proof. Consider critical pairs ι, ι′ ∈ I(o) with ι �� ι′,
and assume ι < ι′. Since ι is a critical pair, there is a
critical resource pool jι, which is fully occupied. In this
case, if iι � iι′ , then pair ι′ must require some resource
units from pool jι and so α

ϕ̄(o)
ι′ � 0. PS pair ι′ cannot be

critical, which violates the condition ι′ ∈ I(o). Hence,
iι �� iι′ . This proves the lemma.

Recall, for any ranking o, the policy ϕ̄(o) must
satisfy the action and capacity Constraints (9)–(11).
Also, because (9) holds, the complementary slackness
conditions corresponding to the action Constraints (22)
are satisfied by taking φ � ϕ̄(o). However, the com-
plementary slackness conditions corresponding to
the capacity Constraints (23) and Equations (17)–(19)
are not necessarily satisfied if we plug in φ � ϕ̄(o)
and γ: the policy ϕ̄(o) is a heuristic policy applicable
for the relaxed problem defined by (8)–(11) derived
by intuitively prioritizing PS pairs according to their
ranking o ∈ O.

In Section 3.3 we shall define a particular class of
resource allocation models, for which we can show the
complementary slackness conditions are indeed satisfied.

Definition 2. The system said to be decomposable if there
exist multipliers γ ∈ R

J
0, ν ∈ RL and a ranking o ∈ O(γ, ν)

such that ν � ν(o,γ) and the complementary slackness
Conditions (22) and (23) are satisfied by taking φ � ϕ̄(o).
In this case the optimal values of the dual variables are
called decomposable values.

Recall that, in the general case, for γ ∈ R
J
0 and

ν ∈ RL, even if o ∈ O(γ, ν), the policy ϕ̄(o) is not nec-
essarily optimal (because it does not necessarily sat-
isfy (17)–(19)). When the policy ϕ̄(o) is optimal for the
relaxed problem, the ranking o can be used to con-
struct an index policy applicable to the original problem
(detailed stepsareprovided inSection 4). TheoremEC.1
(inAppendix EC.9.3 in the e-companion) then ensures
that such an index policy is asymptotically optimal.

3.2.2. Derivation of the Pair Ranking. We start with a
proposition that shows how the values of the Lagrange
multipliers ν and γ can be derived from a knowledge
of the critical pair and critical resource pool corre-
sponding to a given order o ∈ O.

Proposition 2. For any given γ0 ∈ R
J
0 and o ∈ O, the

linear equations

ν�ι o,γ0

( ) � Ξiι γ, 0
( )

, ∀ι ∈ I o( ) (24)
and

γj � 0, ∀j /∈ jι o( ) ∈ J[ ] | ι ∈ I o( ){ } (25)
have a unique solution γ ∈ RJ .

The proof of Proposition 2 will be given in Ap-
pendix EC.3 in the e-companion. For a ranking o ∈ O,
define a function T o of γ0 ∈ R

J
0 with respect to o ∈ O:

T o(γ0) :� γ, where γ is the unique solution of (24)
and (25). Let T o

j (γ0) represent the jth element of T o(γ0).
Proposition 3. If there exist γ0 ∈ R

J
0 and o ∈ O(γ0, 0) such

that T o(γ0) � γ0, then γ0 is a vector of decomposable
multipliers and the policy ϕ̄(o) based on ranking o is optimal
for the relaxed problem defined by (8)–(11).

The proof of Proposition 3 will be given in Ap-
pendix EC.4 in the e-companion. Recall that I(o) is
the set of critical pairs with respect to the policy ϕ̄(o),
jι(o) is the critical resource pool corresponding to
critical pair ι ∈ I(o) according to ranking o, and
ν�ι (o,γ0) is an output of Algorithm 1 when the inputs
are o and γ � γ0.

Remark 3. Proposition 3 provides a way of checking
decomposability of γ0 and optimality of ϕ̄(o). By Pro-
position 3, any fixed point γ0 ∈ R

J
0 of the function T o

with respect to a ranking o ∈ O(γ0, 0) is a decomposable
vector. The decomposability of γ0 can be checked
without requiring knowledge of any ν ∈ RL. Also, we
present the following corollary of Proposition 3.

Corollary 1. For γ0 ∈ R
J
0 and o ∈ O(γ0, 0), if T o(γ0) �� γ0,

T o(γ0)∈RJ
0 and o∈O(T o(γ0),0), thenT o(T o(γ0))�T o(γ0).

The hypothesis of Corollary 1 requires all compo-
nents of T o(γ0) to be nonnegative. This is not such an
easy condition to satisfy. The proof of Corollary 1 will
be given in Appendix EC.5 in the e-companion.
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In this context, consider a given γ0 ∈ R
J
0 and a

ranking o ∈ O(γ0, 0). If γ0 is a fixed point of T o, then it
is the vector of decomposable multipliers; if it is not
but T o(γ0) is a nonnegative fixed point of T o, then
T o(γ0) represents the decomposable multipliers. How-
ever, in both cases, we need to propose a specificγ0; this
requires prior knowledge of the multipliers, which is,
in general, not available. Section 3.3 will discuss a
special case where the decomposability is provable,
and we have a method of deriving the decomposable
multipliers. Here, to make a reasonably good choice
of the Lagrangian multipliers in a general system, we
embark on a fixed point iteration method.

Because Proposition 3 requires a fixed point γ of the
function T o with o ∈ O(γ, 0), we need to iterate not
only the value ofγ but also the corresponding ranking
o, which affects the function T o and should be an
element of O(γ, 0). Following the idea of conventional
fixed point interation methods, for k ∈ N0, let γk+1 �(T ok (γk))+with initialγ0 and o0 ∈ O(γ0, 0), where (v)+ :�
(max{0, vi} : i ∈ [N]) for a vector v ∈ RN (N ∈ N+).
Construct a ranking ok+1 ∈ O(γk+1, 0) according to ok:
for any two different PS pairs (i,n) and (i′,n′) with
Ξi(γk+1, 0) � Ξi′ (γk+1, 0), (i,n) precedes (i′,n′) in the
ranking ok+1 if and only if (i,n) precedes (i′, n′) in the
ranking ok. Here, the operation (·)+ is used to make all
the elements of γk+1 nonnegative, so that γk+1 is fea-
sible for the function T ok+1 . Thus, the ranking ok+1
inherits the tie-breaking rule used for ok so that the
difference between ok and ok+1, whichmust satisfy ok ∈
O(γk, 0) and ok+1 ∈ O(γk+1, 0), isminimized. Corollary 1
can be used to check whether the γk+1 is a fixed point
of the function T ok . Also, γk+1 and ok+1 are uniquely
determined by γk and ok. We can consider (γk, ok) as an
entity which is an argument delivered to the function
T ok (γk), and wish to find a fixed point in this sense.

In the general case, the function T ok (γk) is discon-
tinuous in γk and the sequence {γk}∞k�0 is heuristically
generated with no proof of convergence to a fixed
point. In fact, the choice of γk+1 � (T ok (γk))+ may re-
sult in the sequence {γk}∞k�0 being trapped in oscilla-
tions. To avoid this, with slight abuse of notation, we
modify the iteration as γk+1 � (cT ok (γk) + (1 − c)γk)+
with a parameter c ∈ [0, 1], which captures the effects
of exploring the new point T ok (γk). Numerical ex-
amples of iterating γk will be provided in Section 5.

With an upper bound, U ∈ N+, we take k∗ :�
argmink�1,2,...,U ‖γk−1 − γk‖ and consider ok∗ as a rea-
sonably good ranking of PS pairs. Such ok∗ is pre-
computable with computational complexity no worse
than O(U(N2 + J2)), where N2 and J2 result from or-
dering the N pairs and solving the J linear equations,
respectively. In Section 4, we show that an index
policy feasible for the original problem can always be

generated with such an ok∗ , and the implementation
complexity isO(I) in terms of computation and storage.

3.3. Weakly Coupled Constraints
Here, we discuss a sufficient condition under which
the sequence {γk}∞k�0 is provably convergent; and, in
Section 5, when this condition fails, we show via nu-
merical examples that the sequencemight still converge.

Definition 3. Recall the matrix W � (wj,i) defined in
Section 2.1. We say that row j ∈ [J] is
1. A type 1 row if there is at most one i ∈ [I]

with wj,i > 0;
2. A type 2 row if there is more than one i ∈ [I]

with wj,i > 0.

That is, row j is a type 1 row if resource pool j is not
shared by patterns of different types and is a type 2
row, otherwise. Denote by Ji � {j ∈ [J] | wj,i > 0} the
set of resource pools used by pattern i. We then
define a condition.

3.3.1. Weak Coupling. A system is weakly coupled if,
for any pattern i, there is at most one j ∈ Ji with row j
of W being a type 2 row.
This condition implies that there is at most one

shared resource pool associated with each pattern.
In a weakly coupled system, if pattern i1 shares a
resource pool j12 with pattern i2 and pattern i1 shares a
resource pool j13 with pattern i3, then j12 � j13. A
system where each of the patterns requires only one
resource pool is clearly weakly coupled. In a weakly
coupled system, dependencies between state variables
of different patterns still exist, because each resource
pool can be shared by requests of multiple RTs.

Definition 4. For a weakly coupled system define,
for each i ∈ [I]\{d(�) : � ∈ [L]}, w∗i � wj,i, where j is the
only resource pool in Ji shared with other patterns,
if there is one; or any member of the set arg minj′∈Ji

Cj′
wj′ ,i

,
otherwise.

Definition 5. For a weakly coupled system define, for
ν ∈ RL, a set of PS rankings O∗(ν) ⊂ O such that, for any
o ∈ O∗(ν), PS pairs ι ∈ [N] are ranked according to the
descending order of

Ξ∗ι �
Ξiι 0,0( )−ν�ι

w∗iι 1+λ�ι /μiι( ) , if ∄� ∈ L[ ], iι � d �( ),
0, otherwise.

{
(26)

Proposition 4. If the system is weakly coupled and there
exists a ranking o ∈ O∗(0) satisfying ν(o, 0) � 0, then the
capacity constraints described in (10) are decomposable and
the policy ϕ̄(o) is optimal for the relaxed problem defined by
(8) and (9)–(11). In particular, there exist decomposable
multipliers γ ∈ R

J
0 satisfying, for j ∈ [J],
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(i) if there is a critical PS pair ι ∈ I(o) with critical
resource pool j � jι(o), and no j′ �� j with j′ ∈ Jiι is critical
for any other PS pair ι′ ∈ I(o), then

γj � Ξiι 0, 0( ) − ν�i
wj,iι 1 + λ�ι/μiι

( ) ; (27)

(ii) if there are critical PS pairs ι and ι′ in I(o) with
critical resource pools j � jι(o) �� jι′ (o) and jι′ (o) ∈ Jiι , then

γj � wjι′ o( ),iι
wj,iι

Ξiι 0, 0( ) − ν�ι
wjι′ o( ),iι 1 + λ�ι/μiι

( )(

− Ξiι′ 0, 0( ) − ν�ι′
wjι′ o( ),iι′ 1 + λ�ι′ /μiι′

( )); (28)

(iii) otherwise,
γj � 0. (29)

The proof is given in Appendix EC.7 in the e-com-
panion. From Lemma 1, for any critical PS pairs ι, ι′ ∈
I(o) with ι �� ι′, it follows that iι �� iι′ . If the system is
weakly coupled, for any j ∈ [J], there exist at most two
different critical pairs ι ∈ I(o) satisfying j ∈ Jiι . Also,
in aweakly coupled system, for the second case stated
in Proposition 4, if there are critical PS pairs ι and ι′ in
I(o) with critical resource pools j � jι(o) �� jι′ (o) and
jι′ (o) ∈ Jiι , then jι(o) /∈ Jiι′ because there is at most one
resource pool in Jiι shared with other patterns.

In Proposition 4, the assumption that the system is
weakly coupled constrains the way in which resource
pools are shared by different requests. The casewhere
there is an o ∈ O∗(0) with ν(o, 0) � 0 will occur when
the relaxed action Constraint (9) is satisfied with
α
ϕ̄(o)
d(�) (n) > 0 for the only n ∈ Nd(�) and for all � ∈ [L]. To

see this, the construction of the policy ϕ̄(o) guarantees
that the resulting multipliers ν(o, 0) will be nonneg-
ative, and therefore it follows from (21) that αϕ̄(o)

d(�) (n)> 0
only if ν�(o, 0) � 0. That is, having ν�(o, 0) � 0 is as-
sociated with there being a positive probability that
the dummy pattern d(�) is selected in the relaxed
system. Furthermore, if there is a PS pair ι (for a
nondummy pattern iι ∈ P�) that satisfies the condi-
tion described in I, that is PS pair ι causes the relaxed
action Constraint (9) to bite, Algorithm 1 will ensure
that αϕ̄(o)

iι′ (nι′ ) � 0 for all PS pairs ι′ ranked lower than ι
according to the order o. In particular, this will cause
α
ϕ̄(o)
d(�) (n) � 0 for the only n ∈ Nd(�). When an inequality

constraint “bites,” it is satisfied with equality.
Therefore, if αϕ̄(o)

d(�) (n) > 0, it is because the relaxed
capacity Constraints (10) bite before the relaxed ac-
tion Constraints (9). If this is true for all �, then the
capacity constraints are biting for every request type,
and therefore we refer to the case where there is an
o ∈ O∗(0) with ν(o, 0) � 0 as a heavy traffic condition.

3.3.2. Heavy Traffic. The system is in heavy traffic if
there is a ranking o ∈ O∗(0) such that ν(o, 0) � 0.

Remark 4. The property of being weakly coupled and
in heavy traffic simplifies the analysis of the comple-
mentary slackness condition of the relaxed problem. In
particular, the index related to a pattern, described in
Equation (20), is affected only by the multipliers of
resource pools j ∈ [J]withwj,i > 0.Weak coupling helps
reduce the number of such multipliers γj, so that the
index of a pattern is affected by at most one γj, which in
turn affects other pattern indices. When the system is
weakly coupled and in heavy traffic, we can analyti-
cally solve the I linear Equations (24) and (25) and
derive the φ and γ that satisfy the complementary
slackness condition described in Equations (22) and (23).
A detailed discussion is provided in the proof of
Proposition 4.

Proposition 4 guarantees the decomposability of a
systemwhen it is weakly coupled and in heavy traffic.
The property of being weakly coupled and in heavy
traffic is stronger than necessary for decomposability,
but it is simple to check and is satisfied in a number of
common resource allocation problems. Some exam-
ples of how to define such a system are given in
Appendix EC.8 in the e-companion.

4. The Index Policy: Its Implementation in
the Nonasymptotic Regime

In Section 3, we considered the relaxed problem with
Constraints (9)–(11). Here, we return to the original
problem with Constraints (1) and (5).
For each RT � ∈ [L], we refer to a policy ϕ ∈ Φ as an

index policy according to PS-pair ranking o ∈ O, if it
always prioritizes a candidate process in a PS pair
with a ranking equal or higher than those of all the
other candidate processes. This policy ϕ is applicable
to the original problem while, the policy ϕ̄(o) pro-
posed in Section 3.2.1 is not in general. The method of
implementing such a ϕ is not unique; for instance, the
computation of the ranking of the PS pairs can vary.
Here we propose one possible implementation.
For t > 0, we maintain a sequence of I ordered PS

pairs (i,Nϕ
i (t)) (i ∈ [I]) that are associated with the I

patterns, according to the given ranking o and the
state vector Nϕ(t): PS pair (i,Nϕ

i (t)) is placed ahead of
(i′,Nϕ

i′ (t)) if and only if the former precedes the latter in
the ranking o. Let ioσ(Nϕ(t)) (σ ∈ [I]) represent the
pattern associated with the σth PS pair in this or-
dered sequence.
For a general ranking o ∈ O, the variables ioσ(Nϕ(t))

are potentially updated at each state transition. None-
theless, for the purpose of this paper, we mainly focus
on the rankings o ∈ O(γ,ν) (for someγ ∈ R

J
0 and ν ∈ RL)

that follow the descending order of Ξi(γ,ν). In this
case, the variables ioσ(Nϕ(t)) are updated only if a
pattern i ∈ [I]\{d(�)|� ∈ [L]} transitions into or out of
its boundary state |Ni| − 1.
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Under the index policy ϕ, we select L patterns to
accept new arrivals of L types according to their or-
ders in sequence ioσ(Nϕ(t)) (σ ∈ [I]). In particular, at a
decisionmaking epoch t > 0, we initialize aϕi (Nϕ(t)) � 0
for all i ∈ [I] and a set of available patterns to be [I]. If,
for i � io1(Nϕ(t)), Constraints (5) will not be violated
by setting aϕi (Nϕ(t)) � 1, then set aϕi (Nϕ(t)) � 1 and
remove all patterns associated with request type �(i)
from the set of available patterns.

The other L − 1 patterns are selected similarly and
iteratively. That is, we look for the smallest σ ∈ {2,3, . . . , I}
such that

• ioσ(Nϕ(t)) remains in the set of available pat-
terns; and

• Capacity Constraints (5) will not be violated by
setting aϕi (Nϕ(t)) � 1, where i � ioσ(Nϕ(t)).

If there is such a σ, set aϕi (Nϕ(t)) � 1 for i � ioσ(Nϕ(t)),
remove all patterns associated with request type �(i)
from the set of available patterns, and continue select-
ing the remaining L − 2 patterns in the same manner.
When all the L patterns have been selected, we can
stop. Detailed steps are provided in Algorithm 2,
which has a computational complexity that is linear
in I.

Algorithm 2. Implementing the Index Policy ϕ with
respect to ranking o.
Input: a ranking of PS pairs o ∈ O and a given
state n ∈ N.
Output: the action variables aϕ(n) under
the index policy ϕ ∈ Φ with respect to
ranking o when the system is in state n.

1 Function IndexPolicy o, n:
2 aϕ(n) ← 0 / ∗Initializing the action

variables ∗/
3 P ← [I] /* Initializing the set of available

patterns ∗/
4 σ ← 1 /* Starting with the pattern with

the highest priority ∗/
5 while P �� ∅ do
6 i ← ioσ(n)
7 If i ∈ P and Constraints (5) are not violated

by setting aϕi (n) � 1 and Nϕ(t) � n then
8 aϕi (n) ← 1
9 Remove all patterns i′ ∈ P with �(i′) � �(i)

from P

10 end
11 σ ← σ + 1
12 end
13 return aα(n)

The performance of ϕ is mainly determined by the
given order o ∈ O. Based on later discussion of the
asymptotic regime, if the policy ϕ̄(o) is optimal for
the relaxed problem in the asymptotic regime, then ϕ

is asymptotically optimal for the original problem.
Even without the proved asymptotic optimality, the

ranking o should ensure good performance ofϕ as it is
always rational to prioritize patterns according to
their potential profits. As long as there are reasonably
good γ and ν leading to a o ∈ O(γ,ν), which correctly
reflects the potential profits of patterns, the perfor-
mance degradation of ϕ̄(o) is likely to be limited for
the relaxed problem and close to the optimal solution
of the original problem; and the index policy ϕ de-
rived from o is a promising choice for managing re-
sources. For a given ranking o, if the policy ϕ̄(o) is
optimal for the relaxed problem, then the index
policy ϕ derived from o approaches optimality for the
original problem as the capacity C and arrival rates λ
tend to infinity proportional to a scaling parameter h;
that is, the ϕ is asymptotically optimal. A rigorous
discussion of asymptotic optimality, including the
definition of h, is provided in Appendix EC.11 in the
e-companion. We refer to the limiting case as h → ∞
as the asymptotic regime.

5. Numerical Results
We demonstrate via simulation the performance of
the index policy ϕ as the capacities C and arrival rates
λ are scaled by the scaling parameter h discussed in
Appendix EC.9.2 in the e-companion.We concentrate
on systems that are not weakly coupled or in heavy
traffic. In this section, the confidence intervals of all
the simulated average revenues at the 95% level based
on the Student t distribution are maintained within
±3% of the observed mean.
Along with the fixed-point iteration method pro-

posed in Section 3.2.2, we have been able to find
systems that are not weakly coupled or in heavy
traffic but are decomposable. Here, we provide two
examples, where L and J are sampled uniformly from
the sets {2, 3, 4, 5} and {10, 11, . . . , 20}, respectively. As
described in Appendix EC.9 in the e-companion,
the asymptotic behavior of the stochastic process
scaled by h under policy ϕ is further constrained by
parameters ϵ ∈ [0, 1]J×N . The numbers ϵ are important
in deriving the index policy ϕ as applied to the
original problem that maximizes (8) subject to (1)
and (5). Let εM � maxj∈[J],ι∈[N] εj,ι. In Figures 3 and 4,
we referred to an index policy ϕ with specific εM ∈
[0, 1] as INDEX(εM).
We consider three baseline policies: two greedy

policies that prioritize patterns with maximal reward
rates andminimal cost rates and one policy randomly
uniformly selecting an available pattern for each re-
quest type. We refer to the three policies as Max-
Reward,Min-Cost, and Random. The Max-Reward and
Min-Cost policies are in fact index policies with PS
pairs ranked according to the descending order of
their reward rates and the ascending order of their
cost rates, respectively. TheRandompolicywasproposed
by Stolyar (2017) for a Virtual Machine replacement

Fu, Moran, and Taylor: A Restless Bandit Model
Operations Research, Articles in Advance, pp. 1–16, © 2021 INFORMS 13



problem, aiming to minimize the system blocking
probabilities in the case with finite capacities. It is
not a feasible policy of the original problem with
capacity Constraints (5) because it does not reserve
resource units for a specific pattern that is more
profitable than the others. When there are not enough
resource units in a pool to accommodate multiple re-
quest types that have chosen their patterns involving
this pool, the Random policy will always assign the
resource units to the request that arrives first.

In Figure 3, we compare the performance of IN-
DEX(0), INDEX(0.01), the baseline policies, and ϕ̄(ok∗),
where ok∗ is the ranking of the multipliers γk∗ resulting
from the fixed point iteration method (described in
Section 3.2.2) with parameter c � 0.5 and initial point
γ0 � 0. The system parameters are listed in Appendix
EC.16 in the e-companion and are generated by
pseudo-random functions. The discovered multipliers
γk∗ for simulations in Figure 3, (a) and (b), are
(269.555,0, 0,0, 0,273.11,0, 347.995,0, 0,0, 8.323 × 10−7,
9.726 × 10−5, 0) and 0, respectively, satisfyingT o

k∗ (γk∗)�
γk∗ in the asymptotic regime. By Proposition 3, these
γk∗ are decomposable multipliers and, by Theorem
EC.2 in the e-companion, the index policies derived
from the rankings ok∗ are asymptotically optimal. Let
R(o) :� limh→+∞ Rϕ̄(o),h (o ∈ O) of which the existence

is guaranteed in the proof of Theorem EC.1 in the
e-companion. For the decomposable systemswith h <
+∞ and ϕ̄(ok∗) optimal for the relaxed problem in the
asymptotic regime, the asymptotic long-run average
revenue, R(ok∗), is no less than the optimum of the
original problem: R(ok∗) is an upper bound of Rφ,h for
any φ ∈ Φ.
Figure 3 illustrates the relative difference of aver-

age revenues, (R(ok∗) − Rφ,h)/R(ok∗) for φ � INDEX(0),
INDEX(0.01), Max-Reward, Min-Cost, and Random,
against the scaling parameter h.
In this context, there are two aspects of performance

evaluation presented in Figure 3. First, we see the
performance of the index policies in the nonasymptotic
regime by comparing their long-run average revenues
with an upper bound on the optimum. In particular,
Figure 3, (a) and (b), shows that INDEX(0.01) sig-
nificantly outperforms INDEX(0) for large h: the small
but positive ϵ does affect the performance of ϕ. The
performance of INDEX(0.01) is close to the upper
bound of the optimal solution with relative difference
less than 5% for h greater than 50 in all three examples.
On the other hand, by comparing to R(ok∗), a trend

of coincidence between RINDEX(0.01),h and R(ok∗) is
observed in Figure 3 as h increases from 1 to 100, con-
sistent with the proved asymptotic optimality of ϕ.

Figure 3. Relative Difference of a Specific Policy to R(ok∗ ) Against the Scaling Parameter of the System

(a) (b)

Note. (a) Nonzero decomposable multipliers; and (b) zero decomposable multipliers.

Figure 4. An Example with Non-Decomposable Multipliers

(a) (b)

Notes. (a) Relative difference of a specific policy to R(ok∗ ) against scaling parameter of the system. (b) Relative difference of a specific policy to
R(ok) against k.
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Recall that the examples presented in Figure 3 are
not for systems with weak coupling or heavy traffic
but the index policy ϕ is still proved to be asymp-
totically optimal here. Also, the performance of ϕ is
close to the optimum without requiring extremely
large h.

In Figure 4, we consider another example with multi-
pliers that are not decomposable (that is, T o

k∗ (γk∗) ��γk∗ ).
Similar to Figure 3, in Figure 4(a), we plot the relative
difference of revenue of INDEX(0), INDEX(0.01), and
the baseline policies to R(ok∗) against the scaling pa-
rameter; whereas in Figure 4(b), fixing the scaling
parameter h � 50, we illustrate curves of the rela-
tive differences, (R(ok) − Rφ,h)/R(ok) (φ � INDEX(0),
INDEX(0.01),Max-Reward,Min-Cost,Random), aga-
inst the number of iterations k for the fixed point it-
eration method. The rankings ok are potentially dif-
ferent as k varies, which influencesR(ok). In Figure 4(a),
the INDEX(0) and INDEX(0.01) are proposed based
on the ranking ok∗ , whereas, with slightly abused
notation, in Figure 4(b), INDEX(0) and INDEX(0.01)
represent the index policiesϕ, which are derived from
the rankings ok associated with the varying k, with
εM � 0 and 0.01, respectively. The system parame-
ters for the simulations in Figure 4 are listed in Ap-
pendix EC.16 in the e-companion.

Figure 4(a) can be read in a similar way to Figure 3
except that R(ok∗) is not a proved upper bound for the
average revenue for the original problem. Here, IN-
DEX(0) and INDEX(0.01) perform similarly and nu-
merically converge to R(ok∗) as h increases, although
the system is not necessarily decomposable. The
convergence is consistent with Theorem EC.1 in the
e-companion that generally holds without requiring
decomposability. On the other hand, for each finite h
(which corresponds to the nonasymptotic regime),
INDEX(0) and INDEX(0.01) significantly outperform
all the other baseline policies, although the system is
not proved to be decomposable.

Figure 4(b) illustrates the performance trajectory as
the iteration number k (the x axis) for the fixed point
iterationmethod increases for a systemwith h � 50 (in
the nonasymptotic regime). Recall that, for the sim-
ulations presented here, the average revenues of
INDEX(0) and INDEX(0.01) and R(ok) are varying
with k, whereas all of the baseline policies are inde-
pendent of k. We observe a sharp jump on the curves
between k � 1 and 5. This is caused by the initial
setting, γ0 � 0, which is not a good choice of multi-
pliers. After several steps of the iteration method, the
curves in Figure 4(b) become almost flat; that is, the
values of R(ok), RINDEX(0), and RINDEX(0.01) become
relatively stable for k � 5 to 50. Also, in Figure 4(b),
after the performance becomes stable, INDEX(0) and
INDEX(0.01) achieve clearly higher long-run average
revenues than those of the baseline policies: given the

poor setting at the beginning, the fixed point iteration
method can still lead to a reasonably good ranking ok∗
and its associated multipliers γk∗ .

6. Conclusions
Wemodeled a resource allocation problem, described
by (8), (1), and (5), as a combination of various
RMABPs coupled by limited capacities of the shared
resource pools, which are shared, competed for, and
reservedbyrequests.Thispresentsuswithanoptimization
problem for a stochastic system, aimed at maxi-
mizing the long-run average revenue by dynami-
cally accommodating requests into appropriate re-
source pools.
Using the ideas of Whittle relaxation (Whittle 1988)

and the asymptotic optimality proof of Weber and
Weiss (1990), we proved the asymptotic optimality of
an index policy (referred to as ϕ) if the capacity con-
straints are decomposable with multipliers γ ∈ R

J
0

(Theorem EC.2 in the e-companion).
We proved a sufficient condition, described as the

property of being weakly coupled and in heavy
traffic, for the existence of such decomposable mul-
tipliers and the asymptotic optimality of policy ϕ
(Corollary EC.1 in the e-companion). The property is
not necessary but is easy to verify and covers a sig-
nificant class of resource allocation problems. We
have listed examples of systems with the property
satisfied in Section 3.3.
In a general system, we proposed a fixed point

method to fine tune the multipliers γ ∈ R
J
0 and a

ranking o ∈ O(γ, 0). We proved that, if there exists
a fixed point γ ∈ R

J
0 of the function T o satisfying

o ∈ O(γ, 0), then this γ is a vector of decomposable
multipliers. We successfully discovered the decom-
posable multipliers in some situations without as-
suming weak coupling or heavy traffic by applying
the fixed-point method. Also, in Section 5, we com-
pared the index policy ϕwith different parameter ϵ to
baseline policies through simulations for systems that
are not weakly coupled or in heavy traffic in the
nonasymptotic regime. The index policy achieves
clearly higher performance than the baseline policies.
To the best of our knowledge, no existing work
provides rigorous asymptotic optimality for a re-
source allocation problem where dynamic allocation,
competition, and reservation are permitted.
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